	Column I		Column II
A.	CH3-O-CH3	1.	OH + CH ₃ I
Β.	СH ₃ СH ₃ >СH — O — CH ₃	2.	$CH_3 \\ \\ CH_3 - C - I + CH_3OH \\ \\ CH_3$
C.		3.	H CH ₃ OH
D.	OCH3	4.	$CH_3 - OH + CH_3I$
		5.	$CH_3 > CH - OH + CH_3I$
		6.	CH ₃ CH – I + CH ₃ OH
		7.	$\begin{array}{c} CH_3\\ \\ CH_3 - C - OH + CH_3 \mathbf{I}\\ \\ CH_3\end{array}$

8 Match the starting material given in Column I with the products formed by these (Column II) in the reaction with HI.

A. \rightarrow (4) **B**. \rightarrow (5) **C**. \rightarrow (2) **D**. \rightarrow (1)

- A. CH₃ O CH₃ is a symmetrical ether so the products are CH₃I and CH₃OH.
- B. In $(CH_3)_2CH O CH_3$ unsymmetrical ether, one alkyl group is primary while another is secondary So, it follows S_N^2 mechanism. Thus, the halide ion attacks the smaller alkyl group and the products are

$$H_3C$$
 CHOH + CH₃I

- C. In this case, one of the alkyl group is tertiary and the other is primary. It follows S_N¹ mechanism and halide ion attacks the tertiary alkyl group and the products are (CH₃)₃ C —I and CH₃OH.
- D. Here, the unsymmetrical ether is alkyl aryl ether. In this ether $O CH_3$ bond is weaker than $O C_6H_5$ bond which has partial double bond character due to resonance. So, the halide ion attacks on alkyl group and the products are C_6H_5 OH and CH_3I .